خصائص المتجهات في الرياضيات

كتابة امتنان العلي - تاريخ الكتابة: 15 نوفمبر, 2021 11:11
خصائص المتجهات في الرياضيات

خصائص المتجهات في الرياضيات كذلك سنذكر أنواع المتجهات وما هو مفهوم المتجهات كذلك سنذكر مميزات المتجهات كل تلك الموضوعات تجدونها من خلال مقالنا هذا

خصائص المتجهات في الرياضيات

1-ضرب المتجهات
المتجهات كميات تقبل الضرب كذلك ، حيث يمكننا ان نقوم بضرب متجه ما بكمية قياسية ، و عملية ضرب متجه بكمية قياسية هي عبارة عن تغيير في طول المتجه أي أننا في عملية الضرب نقوم بتغيير مقدار المتجه و لكن اتجاهه لن يتغير لو تم ضربه في أي رقم.
و اما عن ضرب المتجهات في بعضها البعض فإنه يوجد نوعين من ضرب المتجهات حيث أنه لو قمنا بضرب متجهين من خلال الضرب النقطي فإن الناتج من هذه العملية سوف يكون عبارة عن كمية قياسية و لذلك فإن هذا النوع من الضرب يعرف الضرب القياسي ، أما النوع الثاني من ضرب المتجهات فإنه يسمى الضرب الاتجاهي و فيه تقوم بضرب المتجهين ضربا تقاطعوا والناتج هنا يكون متجها جديد عمودي على المتجهين الذين قمنا بضربهما .
2-تساوي المتجهات
و إذا وجد متجهان لهما نفس الطول و المقدار و يكون متجهين إلى نفس الاتجاه أي يشيران إلى اتجاه واحد فإن هذان المتجهان يكونون في هذه الحالة متساويين ، و مثالا على تساوي المتجهات يمكننا القول أن هناك متجهين يشيران إلى الجنوب و مقدار كل متجه منهما 5 إذن يمكننا القول إن هذان المتجهان متساويان ، أما لو كان لأحد المتجهات مقدار مختلف عن الآخر أو انه يشير إلى اتجاه مختلف عن الآخر فإن هذين المتجهين لن يكونا متساويين .
3-جمع المتجهات
تقبل المتجهات الجمع و يمكننا جمع المتجهات من خلال جمع مركبات المتجه مع بعضها البعض ، حيث نقوم بجمع المركب السيني و المركب الصادي و المركب العيني مع بعضها كل على حدة ، كما انه يوجد طريقة هندسية أيضا لجمع المتجهات و ذلك من خلال تمثيل المتجه الأول ثم نقوم بوضع ذيل المتجه الثاني على رأس المتجه الأول و هكذا و في النهاية نقوم برسم سهم من ذيل المتجه الأول إلى رأس المتجه الثاني ، و هذا المتجه الأخير الذي قمنا برسمه هو حاصل عملية الجمع ويسمى المتجه المحصل ، و يتميز جمع المتجهات بخصائص الجمع التبديلية و الترابطية .
4-طرح المتجهات
و المتجهات تقبل الطرح كذلك ، و كما فعلنا في عملية جمع المتجهات يمكننا العمل في الطرح ، و لكن مع ملاحظة انه عملية الطرح هى نفسها عملية الجمع و لكن لن نقوم بعملية جمع متجهين كما فعلنا في عملية جمع المتجهات و لكن في عملية الطرح سوف نقوم بإضافة المتجه الأول إلى سالب المتجه الثاني ، أي أننا نقوم بإضافة المتجه الثاني و لكن بعدما نقوم بعكس اتجاه هذا المتجه

أنواع المتجهات

1-المتجهات الأولية المشتركة
تسمى المتجهات التي لها نفس نقطة البداية متجهات أولية مشتركة.
2-المتجه الصفري
المتجه الصفري هو متجه عندما يكون حجم المتجه صفراً وتتزامن نقطة بداية المتجه مع النقطة النهائية ، ويترتب على ذلك أن حجم المتجه الصفري يساوي صفرًا وأن اتجاه هذا المتجه غير محدد.
3-المتجهات المتشابهة
تُعرف المتجهات التي لها نفس الاتجاه باسم المتجهات المتشابهة ، على العكس من ذلك ، يُطلق على المتجهات التي لها الاتجاه المعاكس فيما يتعلق ببعضها البعض أنها غير متشابهة.
4-المتجهات الخطية
المتجهات التي تقع على نفس الخط أو الخطوط المتوازية معروفة بأنها متجهات خطية ، تُعرف أيضًا باسم المتجهات المتوازية.
5-المتجهات المشتركة المستوية
تُعرف ثلاثة نواقل أو أكثر تقع في نفس المستوى أو موازية لنفس المستوى باسم المتجهات المشتركة المستوية.
6-المتجهات المتساوية
يُقال أن متجهين أو أكثر متساويان عندما يكون حجمهما متساويًا وكذلك اتجاههما هو نفسه.
5-المتجه السالب
إذا كان المتجهان متماثلين في الحجم ولكنهما معاكسان تمامًا في الاتجاه ، فسيكون كلا المتجهين سالبين لبعضهما البعض ، افترض أن هناك متجهين أ و ب ، بحيث يكون هذان المتجهان متماثلان تمامًا في الحجم ولكن في الاتجاه المعاكس ، فيمكن إعطاء هذه المتجهات بواسطة ، أ = – ب.

مفهوم المتجهات

1-المتجه: هو عبارة عن كمية لها مقدار (مقياس/حجم) واتجاه، بمعنى أن المتجه هو كمية متجهة، وليس كالكميات القياسية وهي كميات لها مقدار فقط وليس لها اتجاه (على سبيل المثال الحجم أو درجة الحرارة)، فقد تختلف السرعات (على سبيل المثال السيارة تسير بسرعات مختلفة)، يكون لها اتجاهات مختلفة (يمين، يسار، للأمام، للخلف، للأعلى، للأسفل)، السرعة هي مثال على الكميات التي يمكن وصفها بالمتجهات.
2-من الأمثلة الأخرى على الكميات التي يمكن وصفها بالمتجهات، القوة والتسارع أو العجلة كما تسمّى في بعض البلدان العربية، استخدام المتجهات وقواعدها الحسابية أمر مفيد في تسهيل إجراء العمليات الحسابية، على سبيل المثال عندما يكون لدينا عدد من القوى الكبيرة المختلفة، تؤثر على شيء ما من اتجاهات مختلفة ونريد معرفة التأثير الكلي لهذه القوى.
3-عادةً ما يُرمز إلى المتجهات بحروف فوقها سهم لتوضيح أن هذه الكمية لها مقدار واتجاه، فمثلاً يمكننا استخدام حروف نقطتي البداية والنهاية (AB↦) أو أي حرف آخر مثل (V↦)، طول السهم يمثل مقدار أو مقياس المتجه، بينما يشير السهم إلى اتجاه المتجه، المتجهات التي لها نفس الطول ونفس الاتجاه متشابهة.

مميزات المتجهات

1-تميز المتجهات في عالم الفيزياء بين الكميات المتجهة و الكميات العددية .
2-يمكن تحليل المتجهات و تحديدها من خلال المستويات التي تضم محورين ، محور س و محور ص و اللذان يقعان متعامدين من أجل الحصول على قيمة حساب المتجهات، والتي من خلالها يمكن التعرف على المركبات الصادية والسينية.
3-التمييز بين الكميات المتجهة و الكميات السليمة .
4-تحدد المتجهات في مجال العقارات ، و تحدد المتجهات لكل عقار .
5-يمكن تحديد المتجهات و حسابها عن طريق الرسم الورقي أو الرسم الالكتروني على الكمبيوتر .



585 Views